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A Discordant-Sibship Test for Disequilibrium and Linkage: No Need for
Parental Data
Steve Horvath and Nan M. Laird
Department of Biostatistics, Harvard School of Public Health, Boston

Summary

The sibship disequilibrium test (SDT) is designed to de-
tect both linkage in the presence of association and as-
sociation in the presence of linkage (linkage disequilib-
rium). The test does not require parental data but
requires discordant sibships with at least one affected
and one unaffected sibling. The SDT has many desirable
properties: it uses all the siblings in the sibship; it remains
valid if there are misclassifications of the affectation
status; it does not detect spurious associations due to
population stratification; asymptotically it has a x2 dis-
tribution under the null hypothesis; and exact P values
can be easily computed for a biallelic marker. We show
how to extend the SDT to markers with multiple alleles
and how to combine families with parents and data from
discordant sibships. We discuss the power of the test by
presenting sample-size calculations involving a complex
disease model, and we present formulas for the asymp-
totic relative efficiency (which is approximately the ratio
of sample sizes) between SDT and the transmission/dis-
equilibrium test (TDT) for special family structures. For
sib pairs, we compare the SDT to a test proposed both
by Curtis and, independently, by Spielman and Ewens.
We show that, for discordant sib pairs, the SDT has
good power for testing linkage disequilibrium relative
both to Curtis’s tests and to the TDT using trios com-
prising an affected sib and its parents. With additional
sibs, we show that the SDT can be more powerful than
the TDT for testing linkage disequilibrium, especially
for disease prevalence 1.3.
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Introduction

Family-based association tests between a marker and a
disease locus have become popular mainly because of
two reasons: (a) in the case of tight linkage between a
marker and a disease locus, one can find an association
even when it is difficult to detect linkage (Spielman and
Ewens 1993; Risch and Merikangas 1996); and (b) these
tests protect against detection of spurious associations
that are due to population stratification. The transmis-
sion/disequilibrium test (TDT) (Spielman and Ewens
1993) is a prime example of such a test. It can be used
as a linkage test; it can also be used as a test of linkage
disequilibrium (Ott 1989), provided that either only one
sib per family is used or the test is adjusted to take
correlation between sibs into account (Cleves et al. 1997;
Martin et al. 1997).

Many family-based association tests compare the al-
leles or genotypes transmitted versus those that were not
transmitted to an affected child. These tests can be quite
powerful, but they have one serious limitation: in gen-
eral, they are applicable only if the marker data on both
parents are available, although partial information can
sometimes be used if only one parent is available (Curtis
and Sham 1995; Curtis 1997). Since it is difficult to
obtain parental data for late-onset diseases, there is a
need for family-based association tests that do not re-
quire parental data.

Curtis (1997) has introduced a discordant-sibship test
for association that compares the allele frequencies of
sib pairs that are sampled from discordant sibships ac-
cording to the following procedure: for each discordant
sibship, randomly sample one affected sibling (case) and
then choose (randomly, if necessary) an unaffected sib-
ling (control) whose genotype is maximally different
from that of the case. The sampling of maximally dis-
cordant sib pairs avoids the introduction of correlation
terms arising from the use of multiple sibs; it may lead
to a loss of some information, especially when there are
several affected siblings.

Spielman and Ewens (1998) have introduced the sib-
TDT (S-TDT), which tests for linkage by using discor-
dant-sibship data. The S-TDT is similar in spirit to the
Mantel-Haenszel test (see Laird et al. 1998 [in this issue])
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Figure 1 Sibship marker-genotype configuration

and provides a general test for linkage. It will only be
a valid test of linkage disequilibrium either for sib pairs
or when one also assumes that there is no linkage, since
it requires siblings to be independent, under the null
hypothesis. For sib pairs, it is identical to the test sug-
gested by Curtis (1997). Boehnke and Langefeld (1998)
have considered tests using discordant sib pairs, focusing
on the multiallelic case. They use Pearson-type x2 sta-
tistics for homogeneity and symmetry, evaluating the test
significance by using premutation distributions.

In this study, we introduce a discordant-sibship test
that uses the data of all the affected and unaffected sib-
lings. It can be used both as a linkage test and as a
linkage-disequilibrium test; it allows the computation of
exact P values; and it can be quite powerful. We call it
“SDT” (sibship disequilibrium test), because it will be
particularly useful as a disequilibrium test and because
of its structural similarity to the TDT. In subsequent
sections, we compare the SDT to the S-TDT and Curtis’s
test in the case of sib pairs. Following Spielman and
Ewens (1998), we also compare our test to the TDT. If
the SDT compares favorably, then it can make sense to
use study designs that do not ascertain parents. Com-
paring the SDT only to the S-TDT (or to Curtis’s test)
could lead to a situation in which the SDT is as powerful
as the S-TDT (or Curtis’s test) but in which all tests
compare unfavorably with the TDT; here one should
make every effort to obtain parental information. In
most situations, the natural issue to address is how many
more families (with discordant sibs) should be sampled
if parents are not available.

The SDT Test

SDT for Discordant Sibships

We begin with the case of a biallelic marker with al-
leles denoted as “0” and “1.” For each sibship, denote
by “ ( )” the mean number of 1 alleles among the1 1m mA U

affected (unaffected) siblings; that is,

1m � (total number of 1 allelesA

among the affecteds)/nA

1m � (total number of 1 allelesU

among the unaffecteds)/n , (1)A

where nA (nU) denotes the number of affected (unaf-
fected) members in the sibship.

For example, if a sibship has three affected sibs with
genotypes (1,1), (1,0), and (1,1) and one unaffected sib
with genotype (0,0), then and . Let1 1m � 5/3 m � 0/1A U

d1 denote the difference .1 1m � mA U

We define the SDT to be a (nonparametric) sign test

on these differences. If for a sibship, then we1d � 0
discard that sibship from the analysis. Let b be the num-
ber of sibships for which and let c be the number1d 1 0
for which . We define the SDT statistic as1d ! 0

2T � (b � c) /(b � c) . (2)

In Appendices A–C, we provide a proof that the SDT
statistic asymptotically has a distribution under the2x(1)

null hypothesis of no linkage or no linkage disequilib-
rium ( ). The exact version of the signH :D(v � 1/2) � 00

test allows us to compute exact P values; for example,
a two-sided exact P value is given by

b�c b�c
b b�c1 1b�c b�cP � 2min , .� �two�sided ( )( ) ( )( )[ ]i i2 2i�0 i�b

Extending the SDT to Multiple Alleles

For a marker with two alleles, the SDT is a (nonpara-
metric) sign test on differences d1. Similarly, we define
the SDT for a marker with m alleles (denoted as
“ ”) to be a multivariate sign test on quan-0,1,) ,m � 1
tities dj, as follows: dj ( ) denotes the dif-j � 0, ) ,m � 1
ference , where ( ) equals the average num-j j j jm � m m mA U A U

ber of j alleles in the affected (unaffected) members of
the sibship (see eq. [1]).

Figure 1 shows a sibship with three affected sibs and
one unaffected sib. For the sibship in figure 1, we find
that and , , ,1 1 2 2m � 5/3 m � 0/1 m � 0/3 m � 1/1A U A U

, and and, hence, ,3 3 1 2m � 1/3 m � 1/1 d � 5/3 d �A U

and . Note that im-3 j j�1/1 d � �2/3 S m � S m � 2j A j U

plies and that we therefore can drop d00 m jd � �S dj�1

without losing any information.
There are several multivariate sign tests, but we define

the multiallelic SDT by using the most popular one,
known as the “component” sign test (Bickel 1965; Ran-
dles 1989): Let , where′ 1 m�1 ′ jS � (S , ) ,S ) S �

, denotes the difference for the ith sibship,N j jS sgn(d ) di�1 i i

and as . The test rejectssgn(d) � 1(0, � 1) d 1 (� , !)0
for large values of , where the′ �1H :E(S) � 0 T � S W S0

matrix W has elements (N j kW � S sgn(d )sgn(d ) j,k �jk i�1 i i

). One can verify that, in the case of a bial-1, ) ,m � 1
lelic marker, T reduces to the biallelic SDT given in equa-
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Figure 2 Graph of ARE(T2:T1), which is the expected number
of discordant sib pairs required for T1, divided by the expected number
of discordant sib pairs required for T2. p1 is the marker-allele frequency,
and r is defined by .r � (1 � K )/(1 � K )O P

tion (2). In Appendix B, we show that, under the null
hypothesis of no linkage or equilibrium,T asymptotically
has a distribution.2x(m�1)

A Class of Association Tests for Discordant Sib Pairs

A Class of Discordant-Sib-Pair Tests

In this section we focus on the case in which the data
consist of N discordant sib pairs because other tests of
association are available for this case and because an-
alytic results are possible. We study only two marker
alleles, 0 and 1. For each sib pair, we obtain a pair of
numbers (i,j), where i denotes the number of 1 alleles in
the affected sib and j denotes the number of 1 alleles in
the unaffected sib ( ). Intuitively, we expecti,j � 0,1,2
that, if the 1 allele is positively associated with the dis-
ease, then there will be more pairs (2,0) than pairs (0,2).
Also, we expect to see more (2,1) or (1,0) pairs than
(1,2) or (0,1) pairs. Denote by b2 the number of pairs
(2,0), and denote by c2 the number of pairs (0,2). Further,
denote by b1 the number of pairs (2,1) or (1,0) and
denote by c1 the number of pairs (1,2) or (0,1). We will
now introduce a class of test statistics Tx that can be
used to test the null hypothesis of either no linkage or
no linkage disequilibrium ( ):H :D(v � 1/2) � 00

b � c � x(b � c )1 1 2 2T � ,x 2�b � c � x (b � c )1 1 2 2

where . Under the null hypothesis of no linkage orx 1 0
linkage disequilibrium, Tx has an asymptotic N(0,1) dis-
tribution. T2 corresponds to the test statistic introduced
by Curtis (1997), which is equal to the S-TDT in the
case of sib pairs, whereas T1 corresponds to the SDT.
Note that T1 is based on simply the number of sib pairs
with more 1 alleles in the affected sibling than in the
unaffected sibling, whereas the T2 test gives twice the
weight to (2, 0) sib pairs than to (2, 1) or (1, 0) sib
pairs. As noted by a referee (Duncan Thomas), T2 is a
score test of H0 under an additive genetic model for risk.
Similar expressions can be derived for score statistics
when dominant or recessive models are assumed (e.g.,
see Schaid 1996). T1 is not a score test for any genetic
model, but it has many attractive properties, including
simplicity and ease of extension to multiple sibs.

Comparison of the SDT to Both the S-TDT and the
Curtis (1997) Test, in the Case of Sib Pairs

Assume that, for T1 and T2, one needs to collect on
average of n1 and n2 sib pairs, respectively, to reject the
null hypothesis, at significance level a with power b.
Then, one way to compare the efficiencies is to form the
quotient . In general, it is difficult to find an analyticn /n1 2

expression for this quotient; an approximation to it,
known as the “asymptotic relative efficiency” (ARE[T2:

T1]; Serfling 1981, pp. 317–319), may be defined, in the
limiting cases, as either the linkage-disequilibrium pa-
rameter or the recombination parameterD r 0 v r

. In Appendix D, we also review the ARE, but here1/2
we focus on the results.

We begin with the case in which linkage between gene
and marker has already been established and one wants
to test the null hypothesis of no linkage disequilibrium
( ). Then, for , the ARE is given byH :D � 0 v ( 1/20

4 � 6p (1 � p )W1 1ARE(T :T ) � ,2 1 2[2 � p (1 � p )]1 1

where

2 2W � [16(K � K )v (1 � v) � 4(K � K )O S P O

#v(1 � v) � 1 � K ]/P

[4(K � 2K � K )v(1 � v)P S O

�2 � (K � K )] .P O

Here p1 is the allele frequency of the 1 allele, KP is the
disease prevalence when an arbitrary single-gene model
is assumed, and KO is the offspring relative risk when a
single-gene model is assumed. The ARE has been
defined such that T2 is more powerful than T1, if

.ARE(T :T ) 1 12 1

Since the ARE changes very little with v, we set v �
, so that , where .�10 W � (1 � r) r � (1 � K )/(1 � K )O P

In figure 2 we have plotted the ARE as a function of r
and p1. For fixed p1, the ARE is maximized when r
reaches its maximum of 1, at . In this case, AREK � KO P

is maximized at 1.06 for . Again, for fixed p1,p � 1/21

the ARE is minimized when r reaches its minimum of
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0, as KO approaches 1. In this case, ARE reaches its
minimum of 0.820 when . Large values of KOp � 1/21

imply that KP is large (see Suarez et al. 1976), and the
minimum corresponds to an unrealistic situation. For
realistic diseases, the calculations suggest that the power
of the SDT is very similar to that of Curtis’s test (and
the S-TDT), when D and v are close to 0 and only sib
pairs are used.

When one is testing for linkage ( ), the AREH :v � 1/20

for is given byD ( 0

ARE(T :T ) � [4 � 3p (1 � p )]2 1 1 1

#p (1 � p )(K � K )ZD D O P

�K � K (2p � 1)D �{ S O 1

2�(K � K )p (1 � p )[2 � p (1 � p )] ,}O P D D 1 1

where pD is the disease-allele frequency and KS is the
sibling recurrence risk under the single-gene model.
When , then the ARE is maximized atK � K p �S O 1

, with a maximum of 1.06, and it is minimized, with1/2
a minimum of 1, as p1 approaches 1 or 0. In conclusion,
when one is testing linkage, T2 is always slightly more
powerful than T1, but, when one is testing equilibrium,
neither test is uniformly more powerful. The two tests
have similar power in most situations. The features that
distinguish the SDT are its simplicity and the ease with
which it can be generalized to sibships with several af-
fected and unaffected siblings and still remain a valid
test of association.

Comparison of Tx to the TDT

One might expect that the TDT is always more pow-
erful than a test based only on sibs, but we will show
here that this is not always the case: unaffected sibs can
carry considerable information about both linkage and
linkage disequilibrium, when the disease prevalence is
high. We explore this issue by comparing the number of
family trios (an affected sib and its parents) that need
to be collected for the TDT versus the number of dis-
cordant sib pairs that need to be collected for the SDT
to reject the null hypotheses specified below. In another
section, we determine the number of sibship triplets re-
quired for a specific complex disease. The ARE,
ARE(TDT,Tx), is defined such that it is approximately
equal to the number of discordant sib pairs, divided by
the number of family trios, that are required to reject
H0 at a given significance level and a given power for D

close to 0.
The ARE can be compared to different benchmarks

k: the TDT is more cost efficient than Tx when ARE 1

. Denote the cost of ascertaining a family trio and ak

discordant sib pair as “A(trio)” and “A(pair),” respec-

tively, and denote the cost of genotyping an individual
as “G.” Then one might reasonably define k �

. For example, if the as-[A(trio) � 3G]/[A(pair) � 2G]
certainment costs are negligible and the cost is driven
by genotyping, then .k � 3/2

We begin with a case in which linkage has been es-
tablished and one tests linkage equilibrium, .H :D � 00

When the methods described in Appendix D are used,
the ARE between the TDT and T2, for , is givenv ( 1/2
by

ARE(TDT:T ) � 4(K � 2K � K )(1 � K )2 P S O S

#v(1 � v) � (1 � K )(2 � K � K ) . (3)S O P

Equation (3) can be approximated by setting ,v � 0
to obtain .ARE(TDT:T Fv � 0) � (1 � K )(2 � K � K )2 S P O

How much can the sample sizes differ between
the tests? For a fixed KP, the ARE approaches

as KS and KO approach2ARE (TDT,T ) � 2(1 � K )max 2 P

KP. This is 11 for and 13/2 for ; asK ! .3 K ! .13P P

, it approaches a maximum of 2. The ARE ap-K r 0P

proaches as KS (and hence KP and KO) ap-ARE � 0min

proach 1. The last result can be explained as follows:
when almost every sibling of an affected child is also
affected, then discordant sib pairs carry a lot of infor-
mation; thus, tests that are based on them can be much
more powerful than the TDT, which is applied to af-
fecteds only. However, high values of KS are only possible
when the disease prevalence KP is high (Suarez et al.
1976), and in this situation it could be better in a TDT
analysis to use (or include) unaffected sibs. Thus we have
the interesting result that the asymptotic efficiency of the
TDT can only be better than that of T2 by a factor of
2, for small KP and KS and KO close to KP. On the other
hand, for diseases with high prevalence, there is potential
for considerable loss of efficiency when the discordant
sibs are not used.

The ARE between the TDT and T1 is given by

ARE(TDT,T ) � ARE(TDT,T )ARE(T ,T ) . (4)1 2 2 1

For the ARE approachesp � 1/2 ARE (TDT,T ) �1 max 1

as KS and KO approach KP, and it ap-22.12(1 � K )P

proaches as KS approaches 1.ARE � 0min

When one is testing for linkage ( ), the AREH :v � 1/20

between the TDT and T2 is given by

2�ARE(TDT:T ) � 4 p (1 � p )p (1 � p )(1 � K )[ ] Z2 D D 1 1 S

� �2 p (1 � p )p (1 � p ) � D(1 � 2p ) K /K � 1 .[ ]D D 1 1 1 O P

If , this equation reduces top � 1/2 ARE(TDT:T Fp �1 2 1

. Thus, if , the TDT is more21/2) � 2(1 � K ) p � 1/2S 1

powerful than T2 if . The ARE be-�K ! 1 � .707 # kS
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tween the TDT and T1 when one is testing for linkage
can again be computed with the aid of equation (4).

In summary, when KP—and thus KO and KS—are
large, there is considerable information in the unaffected
sibs, and tests based on discordant sibs may be more
powerful than those based on family trios. This is not
surprising, since the TDT effectively compares the allele
distribution among affecteds versus that in the popu-
lation. If the disease is rare, this can be a very powerful
test, but it will be low in power if the disease is common.
Recall that KO and KS are defined in terms of a single-
gene model; for multigene models, they should not be
interpreted generally as recurrence risks but as recur-
rence risks resulting from considering solely the gene in
question.

Some Sample-Size Calculations

It is difficult to get simple expressions for the ARE
between either the TDT or the S-TDT and the SDT for
multiple sibs. Here we present the average sample sizes
required by SDT and TDT for special situations: Assume
that we test the null hypothesis versusH :D � 00

; the alternative is satisfied if theH :D � D ,v � 0A max

marker allele is a disease allele. Again, we assume a
biallelic marker and disease model, but we restrict the
penetrances of the disease locus to satisfy a genotypic
relative-risk model that has been described by Risch and
Merikangas 1996: and , where f00,

2f � f g f � f g01 00 11 00

f01, and f11 denote P(affected), given 0, 1, or 2 disease
alleles, and is the genotypic risk ratio associatedg � 1
with the disease allele. The sibling and offspring recur-
rence risks lS and lO are defined by andl � K /KS S P

, respectively. For the multiplicative pene-l � K /KO O P

trance model, we get and ,2l � (1 � .5w) l � 1 � wS O

where ,2 2w � p (1 � p )(g � 1) /(p g � 1 � p ) K �D D D D P

, and pD is the disease-allele frequency2f (p g � 1 � p )00 D D

(Risch and Merikangas 1996). In Appendix E we de-
scribe how to compute sample sizes for the SDT.

In table 1 we list (a) the values of lS and KP for the
different disease-locus parameters that we consider here
and (b) the expected sample size required for the TDT
to reject H0 with a two-sided test at withZ � 2.80a

power ( ) when HA is true. The conser-b � .80 Z � .84b

vative a level corresponds to correcting (by the Bonfer-
roni method) an a level of .05 for 10 comparisons. We
also give the ratio of asymptotic sample sizes for the
SDT, based on discordant-sib-pair families, relative to
the TDT, based on family trios. These figures are in good
agreement with the formulas for the ARE, even though
they are for different values of D under HA and are de-
rived differently.

In table 2, the TDT is applied to nuclear families that
consist of family trios, as in table 1. The SDT is now
applied in two different situations: the first consists of

sibship triplets with one affected sib and two unaffected
sibs (AUU sibships), and the second consists of triplets
with two affected sibs and one unaffected sib (AAU sib-
ships). Note that in these cases the number genotyped
per family is equal. Although additional affected sibs
can be added to test for linkage by use of the TDT,
incorporating them to test for linkage disequilibrium is
more complex (Martin et al. 1997). We here use the
TDT as a benchmark, since the sample sizes are easy to
obtain by means of the formulas of Risch and Meri-
kangas (1996).

For a disease-locus model with the specific penetrance
functions described above, the sample sizes for the AAU
pairs (table 2) show that the SDT compares favorably
with the TDT, when KP is large.

Discussion

The SDT can be viewed as a (nonparametric) sign test
that compares, within each family, the average number
of alleles in affected sibs versus those in unaffected sibs.
For discordant sib pairs, several family-based tests of
linkage that are also valid in testing for linkage dise-
quilibrium can be constructed. The critical issue is how
to extend these tests to multiple sibships; tests of linkage
may not be valid tests of linkage disequilibrium, because
of correlation between siblings, when andv ! 1/2

.D � 0
The SDT is also a valid test of linkage, but there are

alternatives—for example, the S-TDT (Spielman and
Ewens 1998) with arbitrary discordant sibships, con-
ditional logistic regression (Self et al. 1991) or Curtis’s
test (1997). The SDT is particularly well suited as a
linkage-disequilibrium test ( ), because itH :D � 0O

avoids having to account for correlation between the
siblings.

How does the SDT fare with misclassifications—that
is, cases in which affected sibs are classified as unaffected
sibs, and vice versa? With misclassifications, the absolute
value of the expected values of is reduced. Thisj jm � mA U

leads to a bias toward the null hypothesis with a re-
duction in power, but the test remains valid.

It is straightforward to combine TDT and SDT when
the data consist of a mixture of families with and with-
out parental information. Let denote theb (c )TDT TDT

number of times that a heterozygous parent transmits
the 1 allele to an affected sib, and let denoteb (c )SDT TDT

the number of discordant sibships without parental in-
formation, where . Define1 1m � m 1 (!)0 b � b �A U TDT

and . One can show that the statisticb c � c � cSDT TDT SDT

has a distribution under the null2 2 2Z � (b � c) /(b � c) x(1)

hypothesis of no linkage. If the families with parental
information consist of family trios, then Z2 has also a

distribution under the null hypothesis of no linkage2x(1)

disequilibrium. Our own experience suggests that the
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Table 1

Sample-Size Ratios for Various Values of gS and KP

g pD lS

NO. OF

TRIOSa

SAMPLE-SIZE RATIOS

(SDT:TDT)

f � .111 f � .311 f � .511 f � .711

KP Rb KP Rb KP Rb KP Rb

4 .01 1.086 348 .007 1.97 .020 1.89 .033 1.82 .046 1.74
4 .1 1.537 48 .011 2.04 .032 1.90 .053 1.75 .074 1.60
4 .5 1.392 33 .039 1.97 .117 1.61 .195 1.24 .273 .94
4 .8 1.128 71 .072 1.82 .217 1.34 .361 .93 .506 .58
2 .01 1.010 1,974 .026 1.89 .077 1.66 .128 1.44 .179 1.23
2 .1 1.076 236 .030 1.92 .091 1.64 .151 1.39 .212 1.15
2 .5 1.114 116 .056 1.88 .169 1.43 .281 1.03 .394 .70
2 .8 1.050 217 .081 1.77 .243 1.24 .405 .79 .567 .43
1.5 .01 1.003 6,662 .045 1.81 .135 1.45 .225 1.13 .314 .85
1.5 .1 1.021 765 .049 1.84 .147 1.45 .245 1.10 .343 .80
1.5 .5 1.040 328 .069 1.83 .208 1.31 .347 .88 .486 .53
1.5 .8 1.021 574 .087 1.74 .261 1.16 .436 .70 .610 .35

a No. of families required for significance level and power , when botha � .005 b � .8
parents are available, , and .v � 0 D � Dmax

b Expected number of discordant sib pairs, divided by the expected number of family trios,
for a two-sided test with significance level and power .a � .005 b � .8

Table 2

Sample-Size Ratios for Family Trios

g PD

NO. OF

TRIOSa

SAMPLE-SIZE RATIOS

(SDT:TDT)

f � .111 f � .311 f � .511 f � .711

AUU AAU AUU AAU AUU AAU AUU AAU

4 .01 348 1.35 1.14 1.35 1.06 1.35 .99 1.35 .92
4 .1 48 1.46 1.58 1.42 1.38 1.38 1.17 1.33 1.00
4 .5 33 1.46 2.73 1.24 1.97 1.03 1.36 .85 .88
4 .8 71 1.25 3.28 .94 2.20 .66 1.35 .42 .73
2 .01 1,974 1.31 1.79 1.24 1.47 1.17 1.19 1.10 .96
2 .1 236 1.37 1.87 1.26 1.50 1.16 1.18 1.05 .91
2 .5 116 1.40 2.33 1.13 1.60 .88 1.03 .66 .61
2 .8 217 1.26 2.78 .92 1.71 .61 .96 .36 .46
1.5 .01 6,662 1.27 2.04 1.13 1.48 .98 1.04 .84 .71
1.5 .1 765 1.32 2.04 1.14 1.46 .96 1.02 .79 .68
1.5 .5 328 1.37 2.19 1.05 1.42 .76 .85 .51 .46
1.5 .8 574 1.26 2.49 .90 1.46 .58 .77 .31 .34

a Defined as table 1.
b Ratio is the expected number of discordant-sibship trios, divided by the expected

number of family trios.

SDT is useful as an independent test even when sufficient
parental data are available to allow one to perform the
standard TDT by using family trios.
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Appendix A

Conditional Probability of Marker Data

For proving that the SDT is a valid test of either
or , the general strategy is to firstH :D � 0 H :v � 1/20 0

derive a formula for the probability of the marker dis-
tribution in an arbitrary nuclear family, given the affec-
tation status of the sibs; this is done in here, in Appendix
A. Then, in Appendixes B and C, the formula is used to
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Figure A1 Nuclear-family marker-genotype configuration

show that, for an arbitrary discordant sibship, 1P(d 1

if either or .10Fd ( 0) � 1/2 v � 1/2 D � 0
To obtain the required probability distribution, we

extend the ordered notation introduced by Thomson
(1995), to allow for families with arbitrary numbers of
affected and unaffected sibs. The ordered notation gives
a straightforward description of the passage of trans-
mitted and nontransmitted marker alleles through a fam-
ily. The basic feature is that the marker-locus genotype
of the first (i.e., affected) sib is used to order the four
parental marker alleles. The genotype of the father is
described such that the marker allele transmitted to the
first sib is listed before the nontransmitted allele, and
the genotype of the mother is described similarly. Marker
alleles in all subsequent sibs are described relative to that
in the first sib. Figure A1 shows the ordered notation in
the case in which the family has three affected sibs and
one unaffected sib. In the following, we will label the
alleles by the letter “I”; for example, the marker alleles
of the father are I1 and I2, those of the mother are I3

and I4, and the marker genotype of the first sib is I1,I3.
For the biallelic case, the letter “I” has been chosen to
point out that I can also be considered as an indicator
variable that indicates whether the 1 allele is present.
The four possible genotypes of the mth additional af-
fected sib in these cases are described relative to that of
the first sib, by the four-dimensional vector Am. Similarly,
we describe the genotypes of the nth unaffected sib by
the four-dimensional vector Un. Again, as is shown in
figure A1, , , , ; and 1I � 1 I � 0 I � 1 I � 0 A �1 2 3 4

, meaning that the first sib inherited I1 and I3,(1,0,1,0)
, meaning that the sib inherited I1 and I4,

2A � (1,0,0,1)
etc. Note that, whereas Thomson uses “d” to label sib-
lings, we use “A” and “U” in all our formulas, to clearly
denote affectation status.

We are now ready to give an explicit expression of
the conditional probability of observing the family
marker data, given the number of affected and unaf-
fected sibs. We begin with an example: we denote by

the probabilityMS(v)A (1,0,0,1)(1,0,1,0)[0,1,0,1](I ,I ,I ,I )1 2 3 4

of observing the marker data in figure A1, given that
the sibs consist of three affected and one unaffected.
Note that parentheses are used for affected and that
square brackets are used for unaffected sibs. In general,
we denote by the probability2 n 1 nA UMS(v)A A ) A U ) UI

of observing the marker data described by the four-di-
mensional vectors , given that there2 n 1 nA UI,A ) A U ) U
are nA affected sibs and nU unaffected sibs.

Before we can give an explicit expression of
in terms of the parameters of2 n 1 nA UMS(v)A A ) A U ) UI

the disease and the marker locus, we have to introduce
more notation. We assume a single-gene model, with two
disease alleles indexed by D0, D1, and m marker alleles
indexed by . The marker-allele fre-j � 0,1,) m � 1
quencies are denoted “pj” and the disease frequencies

are denoted by “ ” and “ .” The penetrance frac-p pD D0 1

tions are f00, f01, and f11—and are expressed as
P(affected)—for 0, 1, and 2 D1 alleles, respectively. The
linkage-disequilibrium parameter will be defined, for
the biallelic-marker case, as D � P(marker allele �

. We define the follow-1 and disease allele � 1) � p p1 D1

ing functions of the disease-allele penetrances and the
recombination fraction v:

2f (v) � (1 � v) f � v(1 � v)f(1,0,1,0)(r,s,t,u) rt ru

2�v(1 � v)f � v f ,st su

2f (v) � (1 � v) f � v(1 � v)f(1,0,0,1)(r,s,t,u) ru rt

2�v(1 � v)f � v f ,su st

2f (v) � (1 � v) f � v(1 � v)f(0,1,1,0)(r,s,t,u) st su

2�v(1 � v)f � v f ,rt ru

2f (v) � (1 � v) f � v(1 � v)f(0,1,0,1)(r,s,t,u) su st

2�v(1 � v)f � v f . (A1)ru rt

Let be the vector that codes ther r r r rA � (A ,A ,A ,A )1 2 3 4

marker-genotype data for the rth affected sib. For con-
venience, we will often drop the subscripts (r,s,t,u) in
equation (A1) and simply use “ ”; for example,f (v)mA

. Here is a final piece of nota-f (v) � f (v)(1,0,1,0) (1,0,1,0)(r,s,t,u)

tion, involving penetrances, that we need for equation
(A3):

f � (f � f � f � f )/4 . (A2)rstu rt ru st su

Similarly, we define ,¯ ¯ ¯ ¯f̄ � (f � f � f � f )/4rstu rt ru st su

where . The probability of a sibshipf̄ � 1 � f PAU(n ,n )A U

with nA affected and nU unaffected members is given by
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Figure B1 Mirror image of marker data in figure A1

PAU(n ,n )A U

1

n �n �1 n �1 nA U A U¯� 4 f f f p p p p . (A3)� rt rstu rstu D D D Dr s t u
r,s,t,u�0

By generalizing the results of Thomson (1995), we can
express as2 n 1 nA UMS(v)A A ) A U ) UI

1

¯ ¯Uf (v) ) f (v)f (v) ) f (v)1 n 1 n� A UA A U U
r,s,t,u�0

#k k k k p p p p I ZI r I s I t I u D D D D1 2 3 4 r s t u

PAU(n ,n ) , (A4)A U

where equals the conditional probability that markerkI r1

allele I1 will be observed on a haplotype that contains
disease allele Dr. If marker and disease locus are in link-
age equilibrium, then .k � pI r I1 1

Appendix B

Distribution of SDT, under H0

We begin with the case of a biallelic marker. We out-
line how to prove that, under , theH :D(v � 1/2) � 00

biallelic SDT statistic (eq. [2]) has an asymptotic 2x(1)

distribution. By definition, b (c) counts the number of
sibships for which ( ), given that1 1 1 1d � m � m 1 0 d ! 0A U

. Define p1 (p!) as the probability that1 1d ( 0 d 1 0
( ), and define p as the conditional probability thatd ! 01

, given that ; that is,1d 1 0 d ( 01

p � p /(p � p ) . (B1)1 1 !

We will show that, under ,H :D(v � 1/2) � 0 p �0

for any discordant sibship. Therefore, given ,1/2 b � c
b has the binomial distribution b ∼ binomial(b �

, and one can use the central-limit theorem to showc,1/2)
that the SDT statistic asymptotically2T � (b � c) /(b � c)
has a distribution. To show that , we will2x p � 1/2(1)

prove that (see eq. [B1]). Note that can bep � p p1 ! 1

expressed as

1p � P(d 1 0Fn affected,n unaffected) ; (B2)1 A U

an analogous equation exists for p!. Thus, we need to
show that, under H0,

1 1P(d 1 0Fn ,n ) � P(d ! 0Fn ,n ) . (B3)A U A U

We express explicitly as1P(d 1 0Fn )A

2 n 1 n 1A UMS(v)A A ) A U ) U I(d 1 0) ,� � � I
2 n 1 nA UI A ,),A U ,),U

where summation over a four-dimensional vector de-
notes the sum over all four possible index values
—(I1,0,I3,0), (I1,0,0,I4), (0,I2,I3,0), and (0,I2,0,I4)
—and where is an indicator variable that is 11I(d 1 0)
if and is 0 otherwise; an analogous equation exists1d 1 0
for p!.

To be able to proceed in the proof, we introduce the
concept of a “mirror image” for marker-data probabil-
ities: The “mirror image” of2 n 1 nA UMS(v)A A ) A U ) UĨ

is defined by setting2 n 1 nA UMS(v)A A ) A U ) U(I ,I ,I ,I )1 2 3 4

2 n 1 nA UMS(v)A A ) A U ) UĨ

2 n 1 nA U� MS(v)A A ) A U ) U .(I ,I ,I ,I )2 1 4 3

Note that the interchange of I1 and I2 simultaneously
with I3 and I4 and then letting this permutation deter-
mine transmissions to all sibs is a special case of a per-
mutation distribution described by Martin et al. (1997)
for the parent-known case and testing of .H :D � 00

Making the permutation simultaneous in both parents
avoids dealing with cases in which transmission status
cannot be determined—that is, two (0,1) parents and
two (0,1) sibs.

Note that the marker-data probability associated with
figure A1 contributes to p1 (since ),1d � 5/3 � 0/1 1 0
whereas the marker-data probability associated with fig-
ure B1 contributes to p! (since ). In1d � 1/3 � 2/1 ! 0
Appendix C we show that this is not a coincidence but
is a general property of mirror images of marker data:
if contributes to p1 (p!), then2 n 1 nA UMS(v)A A ) A U ) UI

contributes to p! (p1). Mirror2 n 1 nA UMS(v)A A ) A U ) UĨ

images have the following two important properties
proved in Appendix C:

1. If there is no association between marker and dis-
ease allele ( ), thenD � 0



1894 Am. J. Hum. Genet. 63:1886–1897, 1998

2 n 1 nA UMS(v)A A ) A U ) UI

2 n 1 nA U� MS(v)A A ) A U ) U .Ĩ

2. If there is no linkage between the marker and dis-
ease locus ( ), thenv � 1/2

2 n 1 nA UMS(v)A A ) A U ) UI

2 n 1 nA U� MS(v)A A ) A U ) U .Ĩ

We are now ready to complete the proof of equation
(B3):

1P(d 1 0 d n ,n ) �A U

2 n 1 nA UMS(v)A A ) A U ) U� � � I
2 n 1 nA UI A ,),A U ,),U

1# PAU(n ,n )I(d 1 0) ,A U

and, forming the mirror image of each summand, we
find that, if either or , thenD � 0 v � 1/2

1P(d 1 0 d n ,n ) �A U

2 n 1 nA UMS(v)A A ) A U ) U˜� � � I
2 n 1 nA U˜ A ,),A U ,),UI

1 1#PAU(n ,n )I(d 1 0) � P(d ! 0 d n ,n ) .A U A U

For the multiallelic SDT, we assume a marker locus
with m alleles and a disease locus with n alleles. We
denote disease alleles by “ ,” and we denoteD , ) ,D0 n�1

their allele frequencies by “ ”; we index diseasep , ) ,pD D0 r

alleles by . Analogous to the biallelicr � 0, ) ,n � 1
case, a measure, Djr, of disequilibrium between marker
allele j and disease allele Dr is defined by D �jr

( , ). Thek p � p p j � 0, ) ,m � 1 r � 0, ) ,n � 1jr D j Dr r

SDT is used to test the null hypothesis of no linkage
( ), or equilibrium —that is,v � 1/2 D � 0 H :D (v �jr 0 jr

( , ).1/2) � 0 j � 0, ) ,m � 1 r � 0, ) ,n � 1
In a manner similar to what has been done in the

biallelic case, one can show, under H :D (v � 1/2) � 00 jr

(for all , ), it holds thatj � 0, ) ,m � 1 r � 0, ) ,n � 1
( ). Thisj j j jP(m � m 1 0) � P(m � m ! 0) j � 1, ) ,mA U A U

implies that the median of dj ( ) is 0. This isJ � 1, ) ,m
the key assumption of the multivariate sign test, and one
can use the multivariate central-limit theorem to show
that the test statistic has an asymptotic 2x(m�1)

distribution.

Appendix C

Properties of Mirror Images

PROPERTY 1. We will show that, if
contributes to p1 (p!), then2 n 1 nA UMS(v)A A ) A U ) UI

contributes to p! (p1). To do2 n 1 nA UMS(v)A A ) A U ) UĨ

this, we need to express the values of and ex-1 1m mA U

plicitly. Before we do this, let us consider the marker
data in figure A1. Here, 1m � (1 � 1 � 1 � 0 � 1 �A

, which can be expressed as 11)/3 m � (I � I � I �A 1 3 1

and, finally, as 1 1 2I � I � I )/3 m � (A 7 I � A 7 I �4 1 3 A

, where and the dot (7) denotes3 1A 7 I)/3 A � (1,0,1,0)
the scalar product between four-dimensional vectors and

These simple formulas comeI � (I ,I ,I ,I ) � (1,0,1,0).1 2 3 4

about because, by labeling the alleles as “0” and “1,”
we are able to avoid indicator functions. In general, it
holds that

nA
m� A 7 I

m�11m � ; (C1)A nA

an analogous formula holds for . Note that, since1mU

every parent transmits one allele to each sib, we have
( ) and, hence,m m m mA � A � A � A � 1 m � 1, ) ,n1 2 3 4 A

andm m n˜A 7 I � I � I � I � I � A 7 I U 7 I � I �1 2 3 4 1

. These relations can be used to shown ˜I � I � I � U 7 I2 3 4

that

n nA U
m n� A 7 I � U 7 I

m�1 n�1� 1 0
n nA U

implies

n nA U
m n˜ ˜� A 7 I � U 7 I

m�1 n�1� ! 0 .
n nA U

With the aid of equation (C1), one can see that this
translates as follows: if con-2 n 1 nA UMS(v)A A ) A U ) UI

tributes to p1 (p!), then con-2 n 1 nA UMS(v)A A ) A U ) UĨ

tributes to p! (p1).
PROPERTY 2. We will show that, if there is no asso-

ciation between the marker allele (i.e., allele 1) and the
disease allele (i.e., ) ( ), thenp D � 0D1

2 n 1 nA UMS(v)A A ) A U ) U(I ,I ,I ,I )1 2 3 4

2 n 1 nA U� MS(v)A A ) A U ) U(I ,I ,I ,I )2 1 4 3

2 n 1 nA U� MS(v)A A ) A U ) U .Ĩ

Recall that . Therefore,Ijk � p � (�1) D/p D � 0I r I Dj j r
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implies that ( ). Using equation (A4),k � p j � 1 ) 4I r Ij j

we conclude that

2 n 1 nA UMS(v)A A ) A U ) UI

1

¯ ¯� [f (v) ) f (v)f (v) ) f (v)1 n 1 n� A UA A U U
r,s,t,u�0

#k k k k p p p p ]/I r I s I t I u D D D D1 2 3 4 r s t u

PAU(n ,n )A U

1

¯ ¯� [f (v) ) f (v)f (v) ) f (v)1 n 1 n� A UA A U U
r,s,t,u�0

#p p p p p p p p ]/I I I I D D D D1 2 3 4 r s t u

PAU(n ,n )A U

1

¯ ¯� [f (v) ) f (v)f (v) ) f (v)1 n 1 n� A UA A U U
r,s,t,u�0

#p p p p p p p p ]/I I I I D D D D2 1 4 3 r s t u

PAU(n ,n )A U

2 n 1 nA U� MS(v)A A ) A U ) U(I ,I ,I ,I )2 1 4 3

2 n 1 nA U� MS(v)A A ) A U ) U .Ĩ

PROPERTY 3. Here we show that, if there is no linkage
between the marker and the disease locus ( ), thenv � 1/2

2 n 1 nA UMS(1/2)A A ) A U ) U(I ,I ,I ,I )1 2 3 4

2 n 1 nA U� MS(1/2)A A ) A U ) U(I ,I ,I ,I )2 1 4 3

2 n 1 nA U� MS(1/2)A A ) A U ) U .Ĩ

Note that (see eq. [A2]). It is easilyf (1/2) � f(A ,A ,A ,A ) rstu1 2 3 4

verified that

f � f . (C2)rstu srut

We define . Then we concluden �na UC � 4 PAU(n ,n )A U

that

2 n 1 nA UMS(1/2)A A ) A U ) UI

11
A ¯ ¯� f (1/2)) f (1/2)f (1/2)) f (1/2)1 n 1 n� UA A U UC r,s,t,u�0

k k k k p p p pI r I s I t I u D D D D1 2 3 4 r s t u

11 n nA U¯� f f k k k k p p p p� rstu rstu I r I s I t I u D D D D1 2 3 4 r s t uC r,s,t,u�0

11 n nA U¯� f f k k k k p p p p ,� rstu rstu I r I s I t I u D D D D2 1 4 3 r s t uC s,rt,u�0

and, using symmetry relations (C2), we get

11 n nA U¯� f f k k k k p p p p ;� srut srut I s I r I u I t D D D D2 1 4 3 r s t uC s,r,t,u�0

and, relabeling the indices—r as s and s as r—we get

11 n nA U¯� f f k k k k p p p p� rstu rstu I r I s I t I u D D D D2 1 3 4 r s t uC r,s,t,u�0

2 n 1 nA U� MS(1/2)A A ) A U ) U(I ,I ,I ,I )2 1 4 3

2 n 1 nA U� MS(1/2) A ) A U ) U .Ĩ

Appendix D

Computation of the ARE

We will briefly review some results regarding the ARE
of test statistics; then we will compare T1 and T2 in the
biallelic setting. We assume the null hypothesis

. If, on average, we need n1 (n2) sib pairs inH :D � 00

order to reject H0 at a given level with a given power,
then ARE(T2:T1) is approximately equal to n1/n2. Strictly
speaking, ARE (also known as “Pitman efficiency”)
equals the ratio of sample sizes that give the same asymp-
totic power function, under sequences of local alterna-
tives. In our case, a sequence of local alternatives is de-
fined by . If, under the sequence of�H :D � d/ NA N

alternatives, Tx converges, in distribution, to a N(dmx,1)
distribution ( ), then the ARE is defined to bex � 1,2

. Now we rewrite the test statistics2ARE(T :T ) � (m /m )2 1 2 1

in a form that allows us to compute m1 and m2: T �x,N

, where� ˜N[W � m(0)]/j W � [b � c � x(b �x,N x,N 1 1 2

, and .2 2˜c )]/N m(0) � 0 j � [b � c � x (b � c )/N]2 1 1 2 2

Next, we cite a result that shows how to compute the
m1 and m2 (see Serfling 1981, pp. 317–319): Consider
testing versus . Suppose that WN is aH :D � 0 H :D 1 00 A

statistic such that converges, in proba-�N[W � m(D)]N

bility, to N[0,j2(D)] on some interval about , whereD � 0
j2(D) and m(D) are continuously differentiable. Set

, where converges in probabil-2� ˜ ˜T � N[W � m(0)]/j jN N

ity to j2(0), under H0. Then, under a sequence of local
alternatives, , for , TN converges, in dis-D � d/N d 1 0N

tribution, to N(dmT,1), where . Letm � [�m(0)/�D][1/j(0)]T

us define the following probabilities: ,P � P((1,0),(2,1))1

, , and .Q � P((0,1),(1,2)) P � P((2,0)) Q � P((0,2))1 2 2

These probabilities are functions of the marker and dis-
ease-allele parameters described in section 3. Using the
central-limit theorem, one can show that, for large sam-
ple sizes,
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b P1 1
1 c Q1 1�N �

b P( ) ( )[ ]2 2N
c Q2 2

P (1 � P ) �P Q �P P �P Q1 1 1 1 1 2 1 2

�Q P Q (1 � Q ) �Q P �Q Q1 1 1 1 1 2 1 2∼ N(0, .
�P P �P Q P (1 � P ) �P Q[ ]2 1 2 1 2 2 2 2

�Q P �Q Q �Q P Q (1 � Q )2 1 2 1 2 2 2 2

One can use the D method to show that, under H0,
and . Now we com-2E(W ) � 0 V(W ) � 2P � 2x Px,N x,N 1 2

pute the ARE between Tx and the TDT. Let b (c) denote
the number of times that a heterozygous parent transmits
the 1 allele (0 allele) to an affected sib. Then the square
root of the TDT statistic is given by TDT �N

, where , ,� ˜N[W � m(0)]/j W � (b � c)/N m(0) � 0N N

, and N denotes the number of family2j̃ � (b � c)/N
trios. Under sequences of local alternatives, TDTN con-
verges, in distribution, to N(dmTDT,1) where mTDT can be
determined as above. We used the software package
MAPLE to perform the calculations, since expressions
for P1, Q1, P2, and Q2 are not readily available.

Many of the results given in the present article can be
expressed in terms of three quantities—KP, KS, and
KO–which are functions of the disease-allele frequencies
and penetrances. KP is the disease frequency K �P

. Here we assume2 2p f � 2p (1 � p )f � (1 � p ) fD 11 D D 10 D 00

, , and . If the disease is causedn � 2 P � P P � 1 � PD D D D1 0

by a single disease gene, then KS (KO) is the incidence of
affected sibs (affected offspring) of probands. Explicitly,
we have andK � K � (V /2 � V /4)/K K � K �S P A D P O P

, where(V /2)/K V � 2p (1 � p )[p (f � f ) � (1 �A P A D D D 11 01

and .2 2 2 2p )(f � f )] V � p (1 � p ) (f � 2f � f )D 01 00 D D D 11 01 00

The relationship between KP, KS, and KO has been ex-
plored by Suarez et al. (1976). For multifactorial dis-
eases, KS and KO should not be interpreted as sibling
and offspring recurrence risk but simply as expressions
that comprise disease-allele frequencies and penetrance
functions.

Appendix E

Sample-Size Calculations

Here we outline how we computed the sample sizes
in table 2. Let us focus on the case of AUU sibships
(table 2), since the calculations for AAU sibships are
analogous. We want to compute the average number of
sibships that need to be genotyped to reject H :D(v �0

when the true model is , .1/2) � 0 H :D � D v � 0A max

The SDT (T) can be considered as a one-sample binomial
test that compares p to its value under H0 ( ).p � 1/20

The value of p can be computed with the aid of equations
(B1)–(B3). Since the computations can become quite
lengthy, we used the software package Maple to help us

with symbolic manipulations. One can show (Rosner
1995) that the sample size needed to conduct a one-
sided test with significance level a and power is1 � b

given by

2

p (1�p )1 1�p (1 � p ) Z � Z0 0 1�a 1�b p (1�p )0 0[ ]
n � .eff 2(p � p )1 0

Note that neff is the required number of sibships with
. However, we are interested in the average1 1m ( mA U

number n of sibships that need to be genotyped. Since
(see Appendix B), we conclude thatn � n(p � p )1 !eff

2

p (1�p )1 1�p (1 � p ) Z � Z0 0 1�a 1�b p (1�p )0 0[ ]
n � .2(p � p )(p � p )1 ! 1 0

Electronic-Database Information

A C�� program that performs the (multiallelic) SDT on any
number of markers is available, free of charge, via the anon-
ymous address ftp://sph70-57.harvard.edu/XDT/

A program that does sample-size calculations for sibships of
the form AU, AAU, and AUU is available, free of charge,
from Xiaolin Wang (xaiolin@hsph.harvard.edu). The pro-
gram requires the software package MAPLE.
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